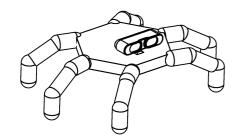
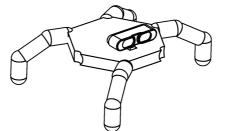
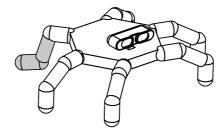
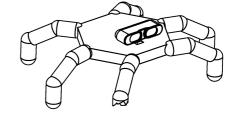


Creative Adaptation through Learning









Antoine CULLY

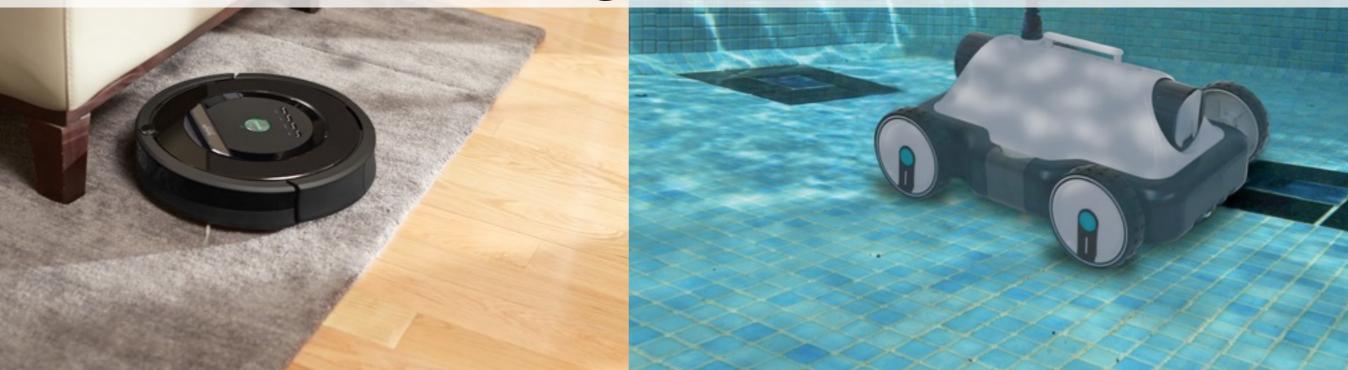
thesis director: **Stéphane DONCIEUX** thesis supervisor: **Jean-Baptiste MOURET**

50 years of research showed that

robots have the power to deliver tremendous benefits to society

Some robots start to spread in society

They operate in relatively simple environments with few actions: It's a good start



Sophisticated and versatile robots

Darpa Robotics Challenge

Robots should continue their mission, even when damaged

are complex to control ...

La Conchita, mudslide (2005) - 2 minutes Fukushima (2011) - lost Fukushima (2015) - 9 m

Murphy et al. (2008). Search and rescue robotics. In Springer Handbook of Robotics

Sago mine (2006) - 700 m

Classic fault tolerance

need to anticipate situations (diagnosis, contingency plans, robust controllers, ...)

5

Visinsky, 1994; Koren and Krishna, 2007

Unexpected situation?

Adaptation through learning ...

... like animals

Wolpert, D.M., Ghahramani, Z.& Flanagan, J. R. (2001) Trends Cogn. Sci.

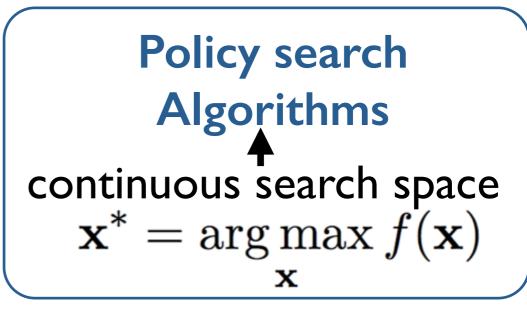
Learning in an unforeseen situation

Reinforcement learning problem

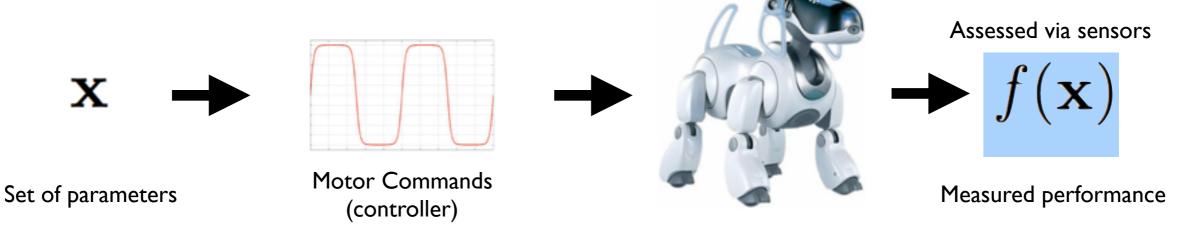
"Reinforcement learning is learning what to do so as to maximize a numerical reward signal."

Sutton, R. S. and Barto, A. G. (1998). *Introduction to Reinforcement Learning*.

Traditional RL algorithms A Discrete state and action spaces

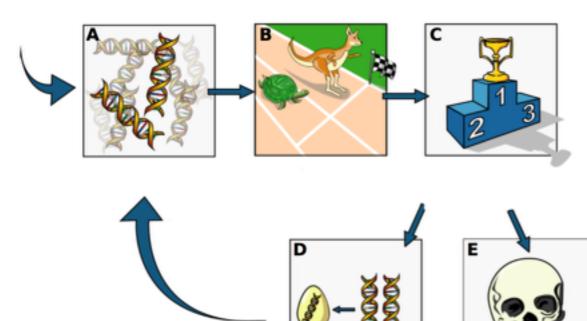


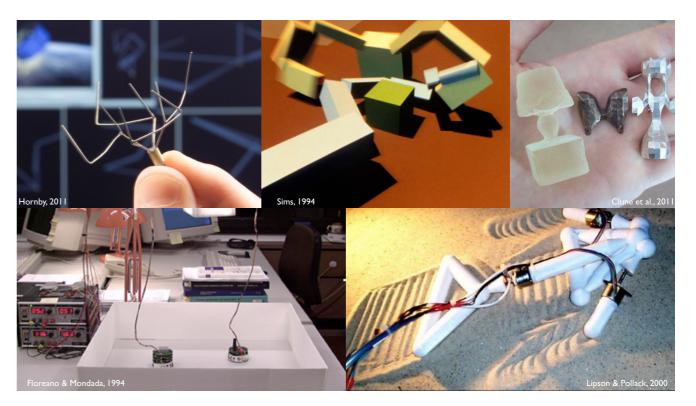
Commonly used for motor skills learning



Kober, J., Bagnell, J.A., and Peters, J. (2013). The International Journal of Robotics Research

Existing Approach: Evolutionary Algorithms

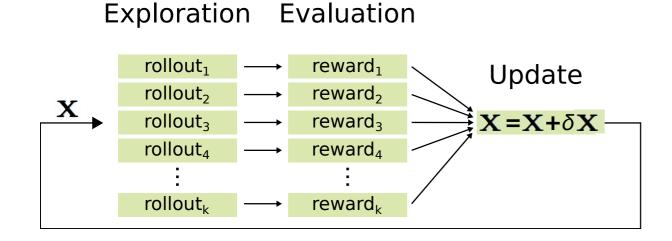




Evolutionary Algorithm Chernova and Veloso (2004) Zykov et al. (2004) Berenson et al. (2005) Hornby et al. (2005) Mahdavi and Bentley (2006) Barfoot et al. (2006) Yosinski et al. (2011)

Starting beh.	Learning time	robot	DOFs	Param.	reward
random	5 h	quadruped	12	54	external
random	2 h	hexapod	12	72	external
random	2 h	quadruped	8	36	external
non-falling	25 h	quadruped	19	21	internal
random	10 h	snake	12	1152	external
random	10 h	hexapod	12	135	external
random	2 h	quadruped	9	5	external

Existing Approaches: **Policy Search**



Evaluation

Fast but:

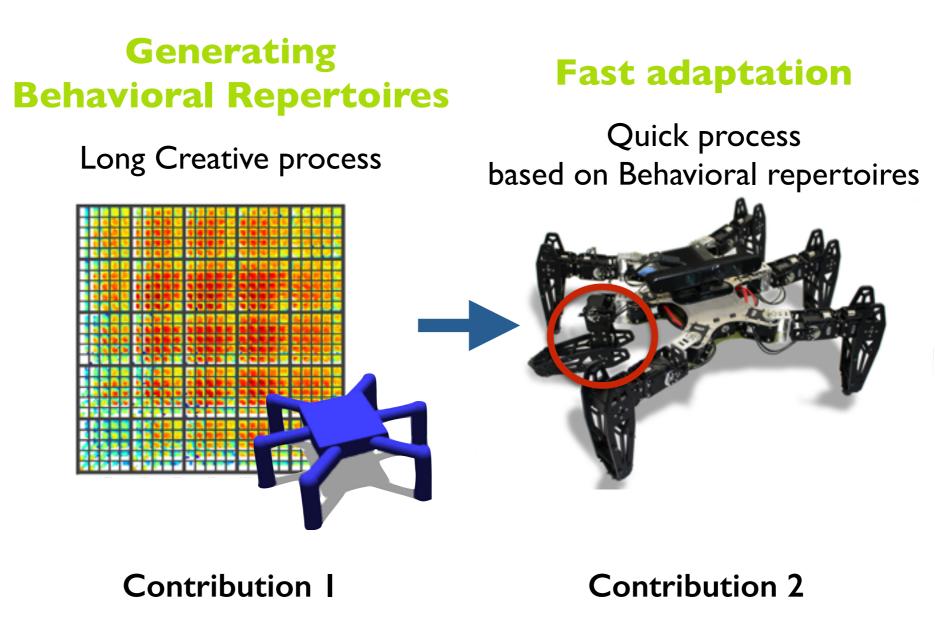
- Local search methods
- Small search space

Policy Search Methods	Starting beh.	Learning time	robot	DOFs	Param.	reward
Kimura et al. (2001)	no info	80 min.	quadruped	8	72	internal
Kohl and Stone (2004)	walking	3 h	quadruped	12	12	external
Lizotte et al. (2007)	center	2h	quadruped	12	15	internal
Calendra et al. (2014)	random	46 min. / 6-9h	biped	4	4	external
Weingarten et al. (2004)	walking	> 15 h	hexapod	6	8	external
Sproewitz et al. (2008)	random	60 min.	quadruped	8	5	external
Hemker et al. (2009)	walking	3-4 h	biped	24	5	external
Barfoot et al. (2006)	random	Ih	hexapod	12	135	external

Main question:

How to learn behaviors Quickly and Creatively?

How to learn behaviors Quickly and Creatively?



Generating Behavioral Repertoires

Contribution I

First one observation:

Learning one behavior

Classic approaches (EA,PS): optimize a single function Learning to walk: max(speed) or min(distance(target))

Robots have to be able to perform a large variety of different behaviors

Learning them one by one? Increases the learning time by a factor equal to the number of behaviors

Objective: Learning a large variety of actions quickly

Main Idea:

Learning all the behaviors of the repertoire simultaneously During a classic learning process: max(d)

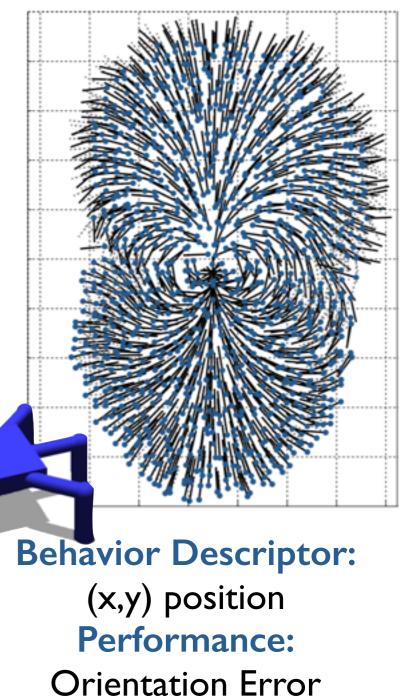
But the others are interesting too.

Best behavior according to max(d).

Classic algorithms find interesting behaviors but discard them... ... Instead of improving them Recycling the creativity of algorithms

Behavioral Repertoire

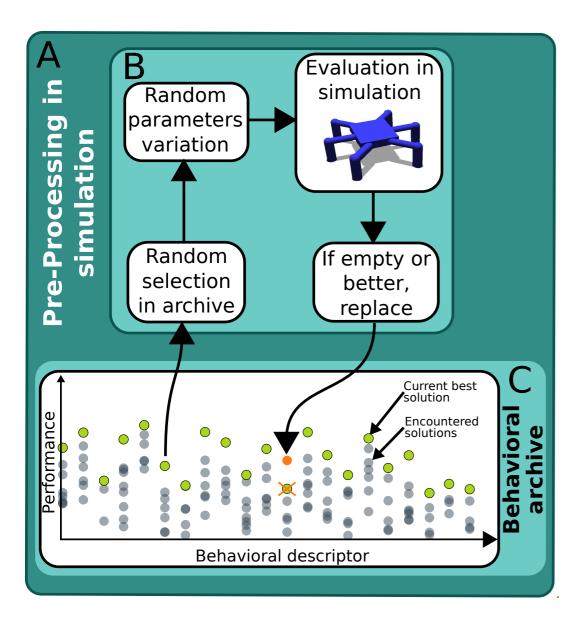
- Containing (all) the possible behaviors of the robot
- Collection of behaviors sorted by a behavioral descriptor
- Behavioral descriptors are mapped to parameter sets of controller (like an inverse model)
- Can be used by higher level algorithms to solve a task. (e.g. planning algorithm)



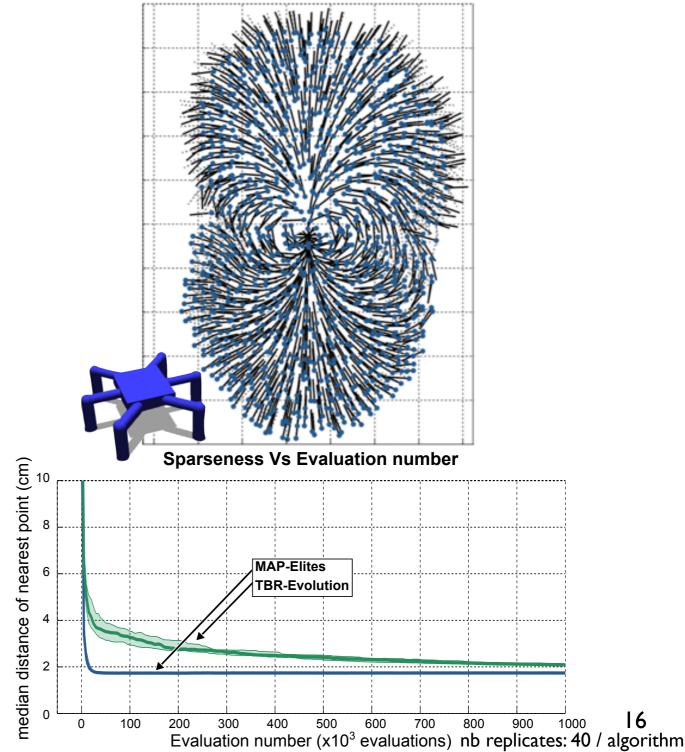
The MAP-Elites Algorithm

initially used to generate plots,

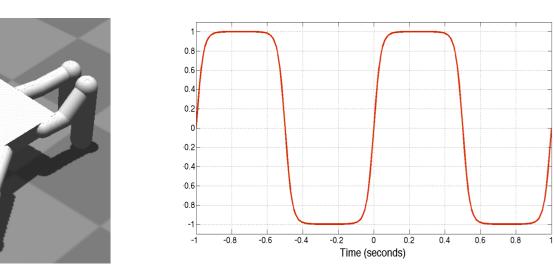
can be used to generate Behavioral Repertoires^[2]



[1] Mouret, J.-B. & Clune, J. (2015). ArXiv
[2] Cully, A., Clune, J., Tarapore, D. & Mouret, J.-B. (2015). Nature



Finding several differentFinding several different $a_i \tanh (4 \sin(2\pi(t + \varphi_i)))$ ways to walk



Controller:

- 2 degrees of freedom per leg
- Amplitude, Phase, Duty Cycle

36 dimensions

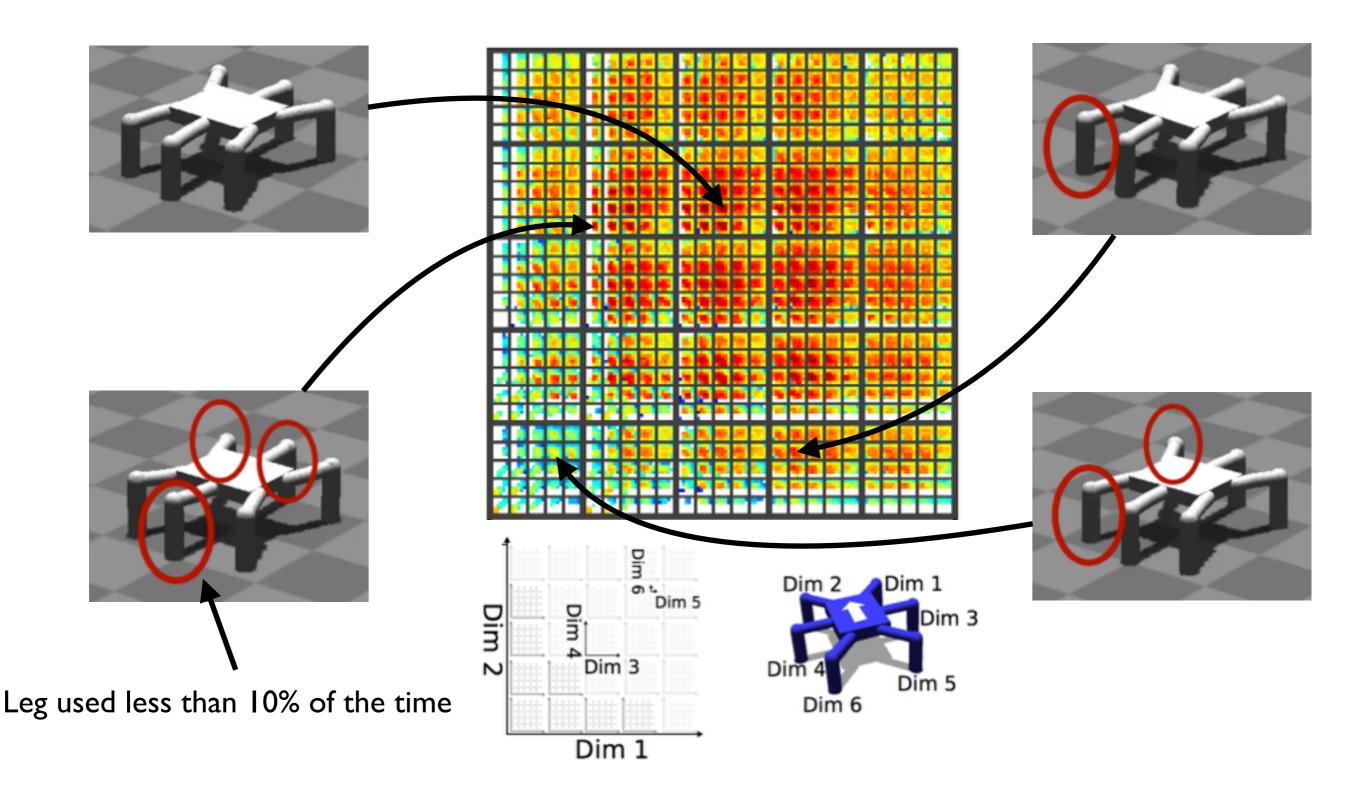
Behavioral Descriptor:

- The proportion of time that each leg touches the ground
- Discrete (0%, 25%, 50%, 75%, 100%)

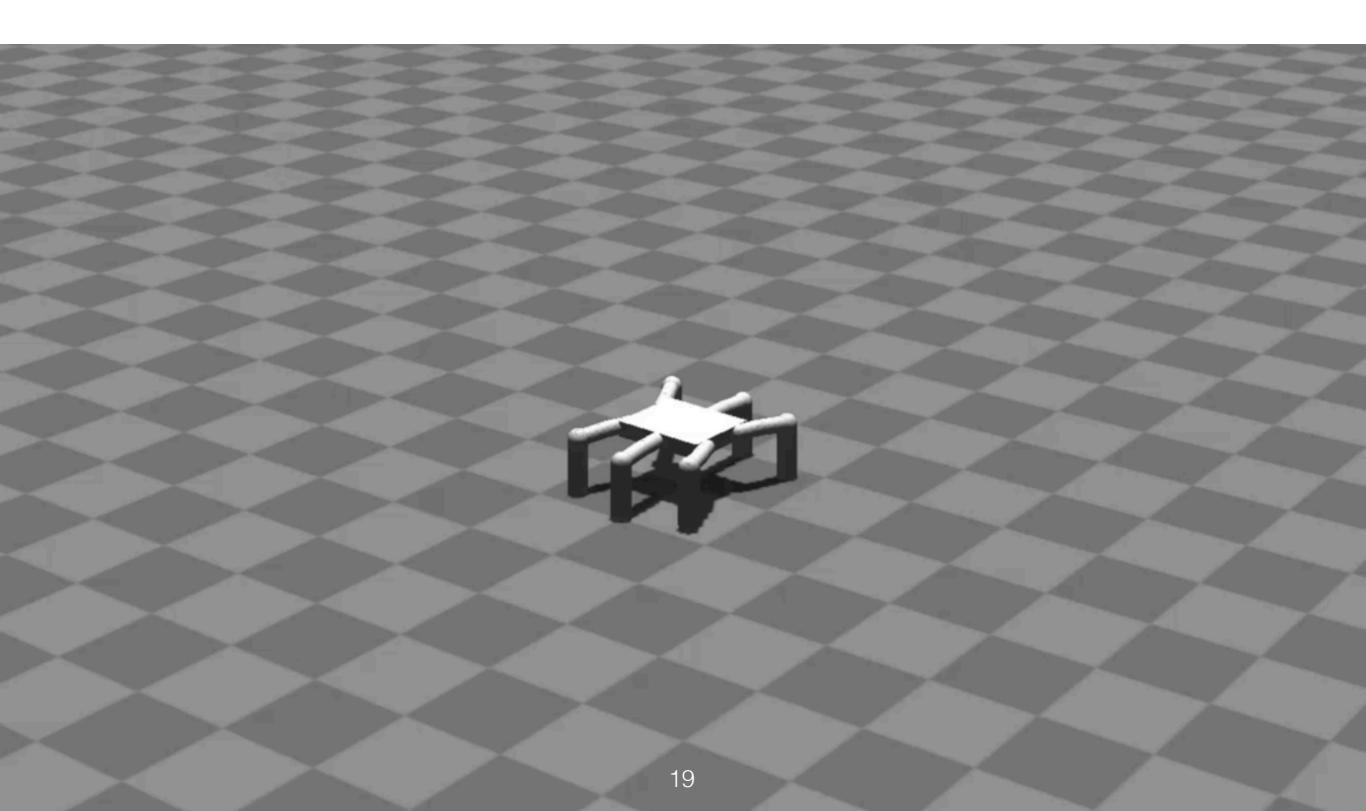
6 dimensions

Performance function: $f(x) = \frac{pos_{front}(robot(x), t = 5s)}{5}$ 40 million evaluations

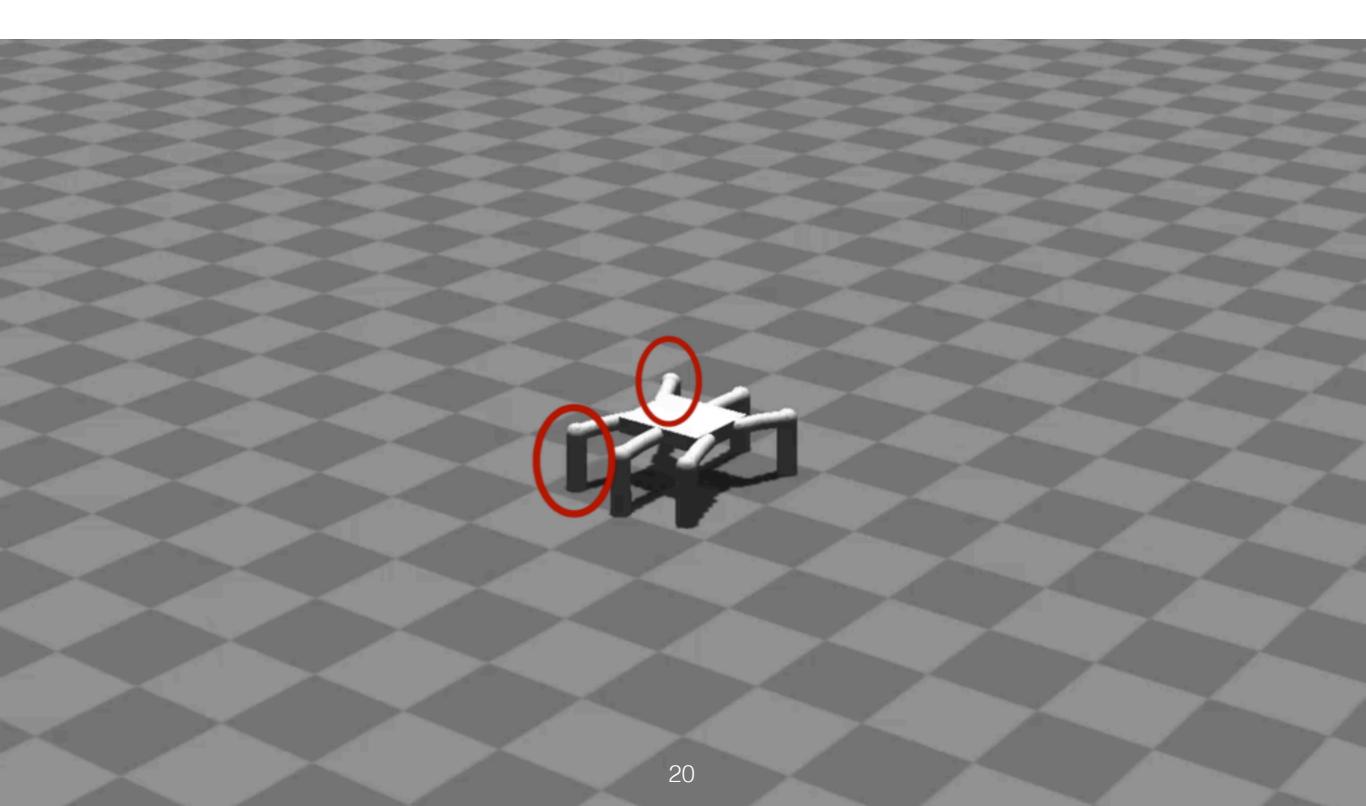
Result: 13 000 Behaviors



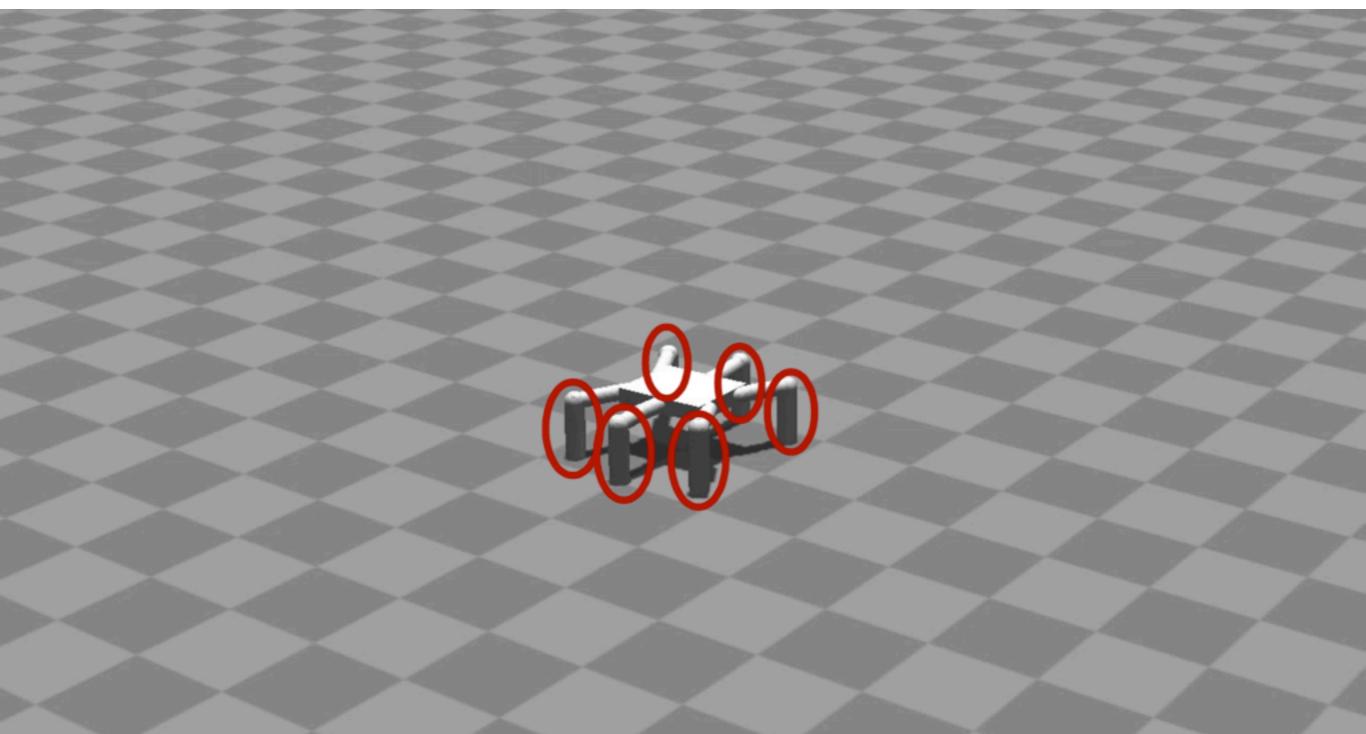
Hexapod Gait



Quadrupedal Gait

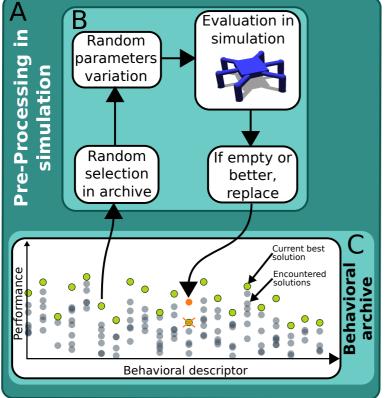


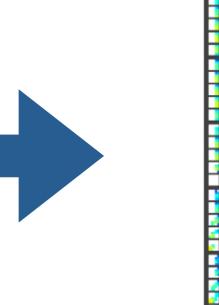
« Creative » Gait

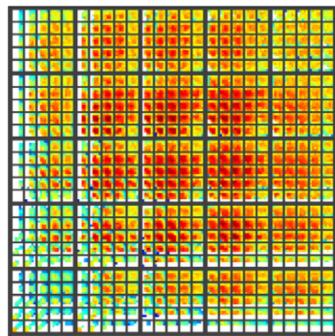


MAP-Elites - Conclusion

MAP-Elites generates autonomously Behavioral Repertoires that contain (all) the possible behaviors of the robot







Behavioral repertoires encapsulate the Creativity of evolutionary algorithms

No assumption about the robot, the controller, the behavior descriptor

Fast adaptation

Contribution 2

While robots learn from scratch animals can rely on prior knowledge

Knowledge about their body,

Instincts, Imagination,

Simulation can be a good source of prior knowledge

But it doesn't take into account the situation (i.e. the damage)

Update of the simulation ~ diagnosis

How to use simulation without updating the model?

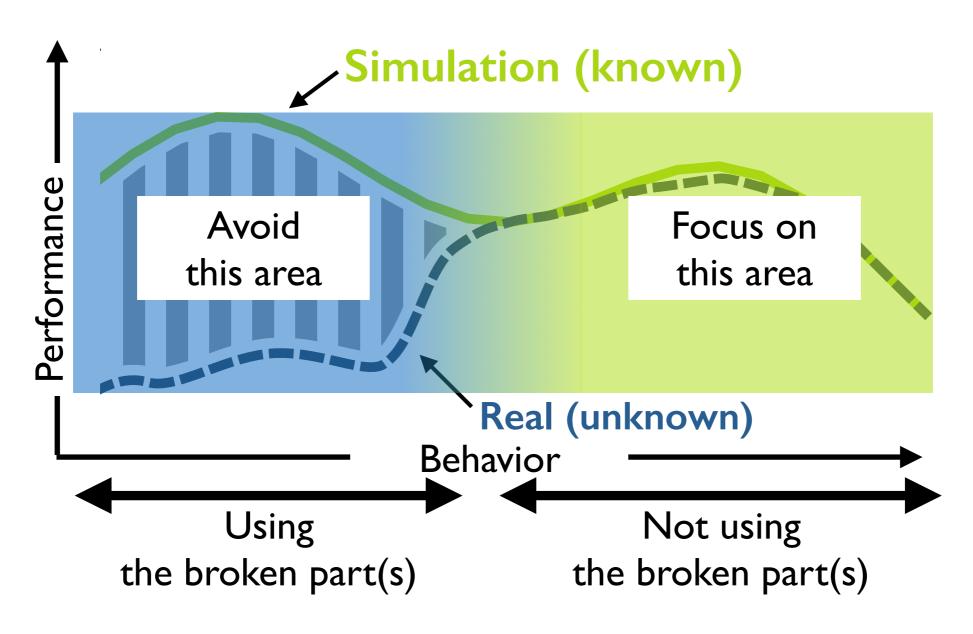
Hypothesis:

Some behaviors perform similarly on the intact robot and the damaged robot

Objective:

Finding such behaviors, in order to learn quickly without updating the simulation (no diagnosis)

Concretely



It's a simpler problem

Adaptation with behavioral repertoire

New Hypothesis:

Some behaviors work similarly on the intact robot and the damaged robot

Behavioral repertoire goal:

Gathering all the possible actions of the intact robot

Searching compensatory behaviors in the repertoire

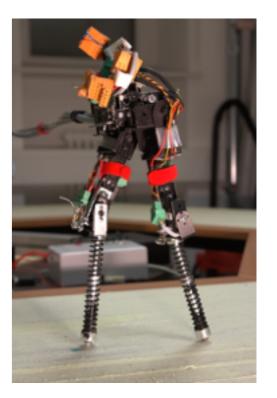
We have some prior knowledge about this smaller search space

Searching in the repertoire using Bayesian Optimization_[1,2,3]

29

- Optimization algorithm of very expensive black-box functions
- Method based on surrogate model and • probabilistic distribution (Similar to Kriging or EGO)
- Active learning with • exploitation/exploration tradeoff
- State of the art of learning (policy • search) techniques

[1] Brochu, Cora & De Freitas. arXiv 2010 [2] Lizotte, Wang, Bowling & Schuurmans. IJCAI 2007 [3] Calandra et al. ICRA 2014

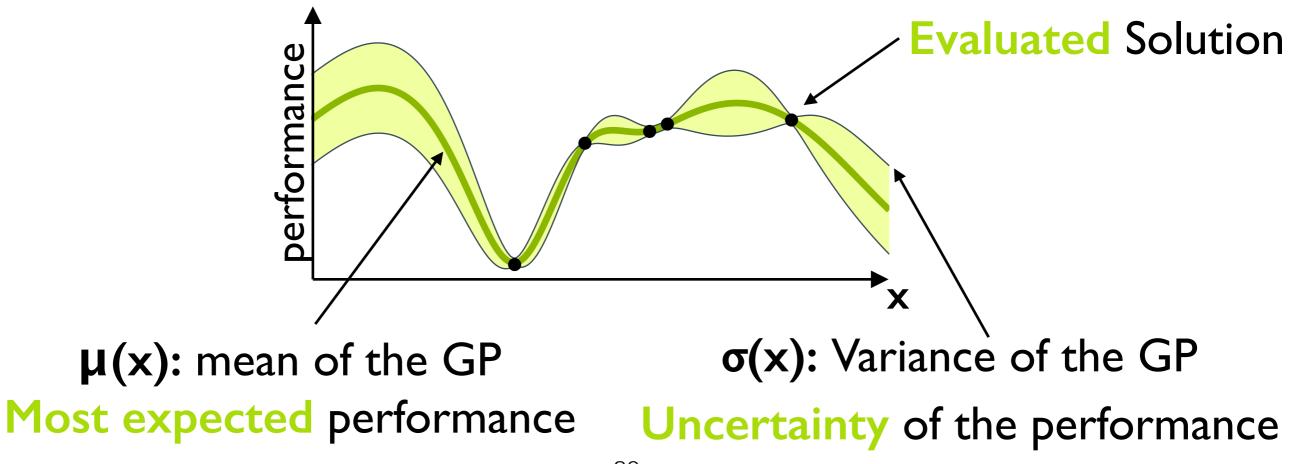


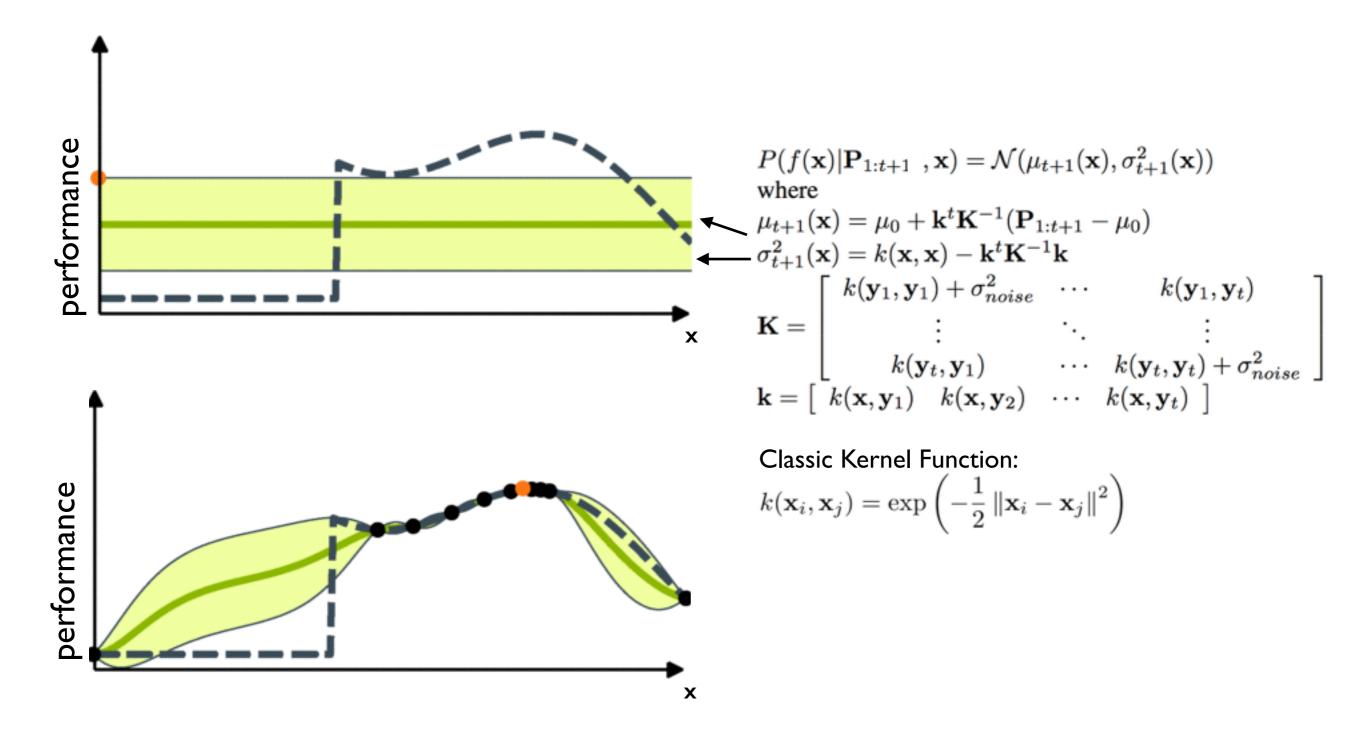
120 Evaluations^[2] (15 parameters)

40 Evaluations (4 parameters)

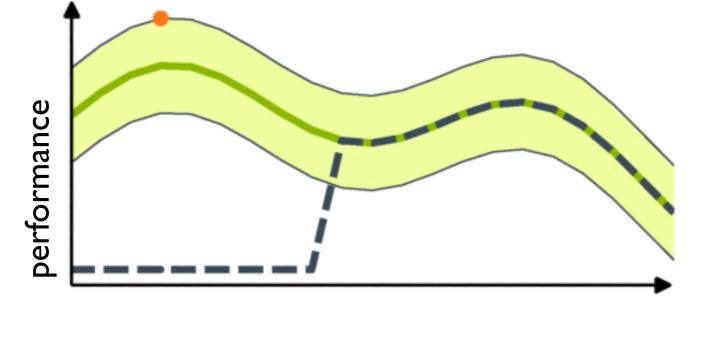
Gaussian Process (GP)

- Generalize performance over the evaluated solutions (regression)
- Models the uncertainty
- Commonly used as model for Bayesian optimization





Using our **prior knowledge** regarding the behavioral repertoire

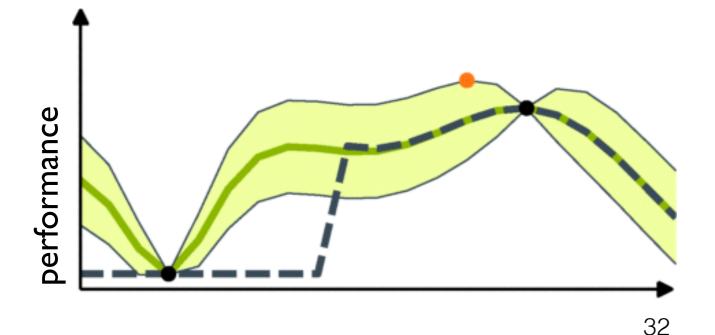


$$P(f(\mathbf{x})|\mathbf{P}_{1:t+1}, \mathbf{x}) = \mathcal{N}(\mu_{t+1}(\mathbf{x}), \sigma_{t+1}^2(\mathbf{x}))$$
where
$$\mu_{t+1}(\mathbf{x}) = \mathbf{A}(\mathbf{x}) + \mathbf{k}^t \mathbf{K}^{-1}(\mathbf{P}_{1:t+1} - \mathbf{A}(\mathbf{y}_{1:t+1}))$$

$$\sigma_{t+1}^2(\mathbf{x}) = k(\mathbf{x}, \mathbf{x}) - \mathbf{k}^t \mathbf{K}^{-1} \mathbf{k}$$

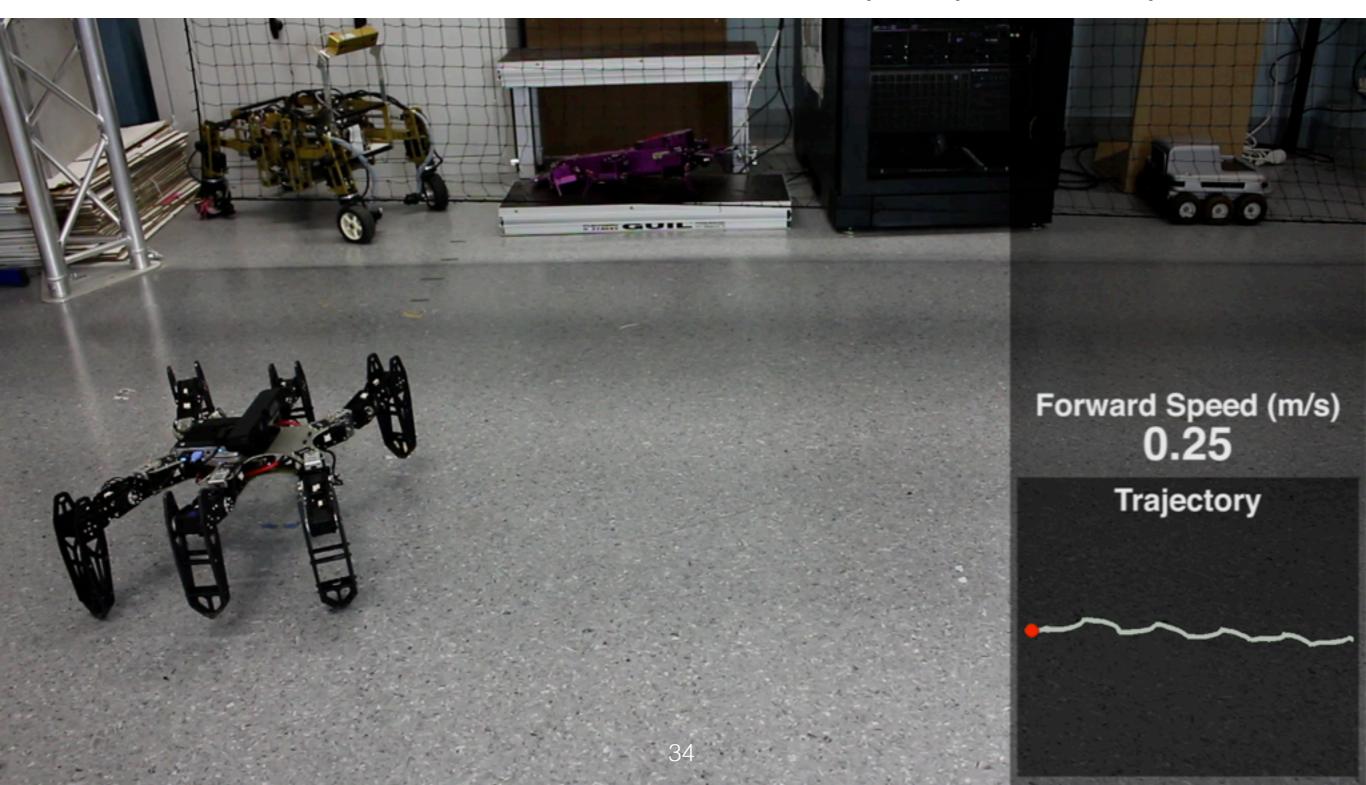
$$\mathbf{K} = \begin{bmatrix} k(\mathbf{y}_1, \mathbf{y}_1) + \sigma_{noise}^2 & \cdots & k(\mathbf{y}_1, \mathbf{y}_t) \\ \vdots & \ddots & \vdots \\ k(\mathbf{y}_t, \mathbf{y}_1) & \cdots & k(\mathbf{y}_t, \mathbf{y}_t) + \sigma_{noise}^2 \end{bmatrix}$$

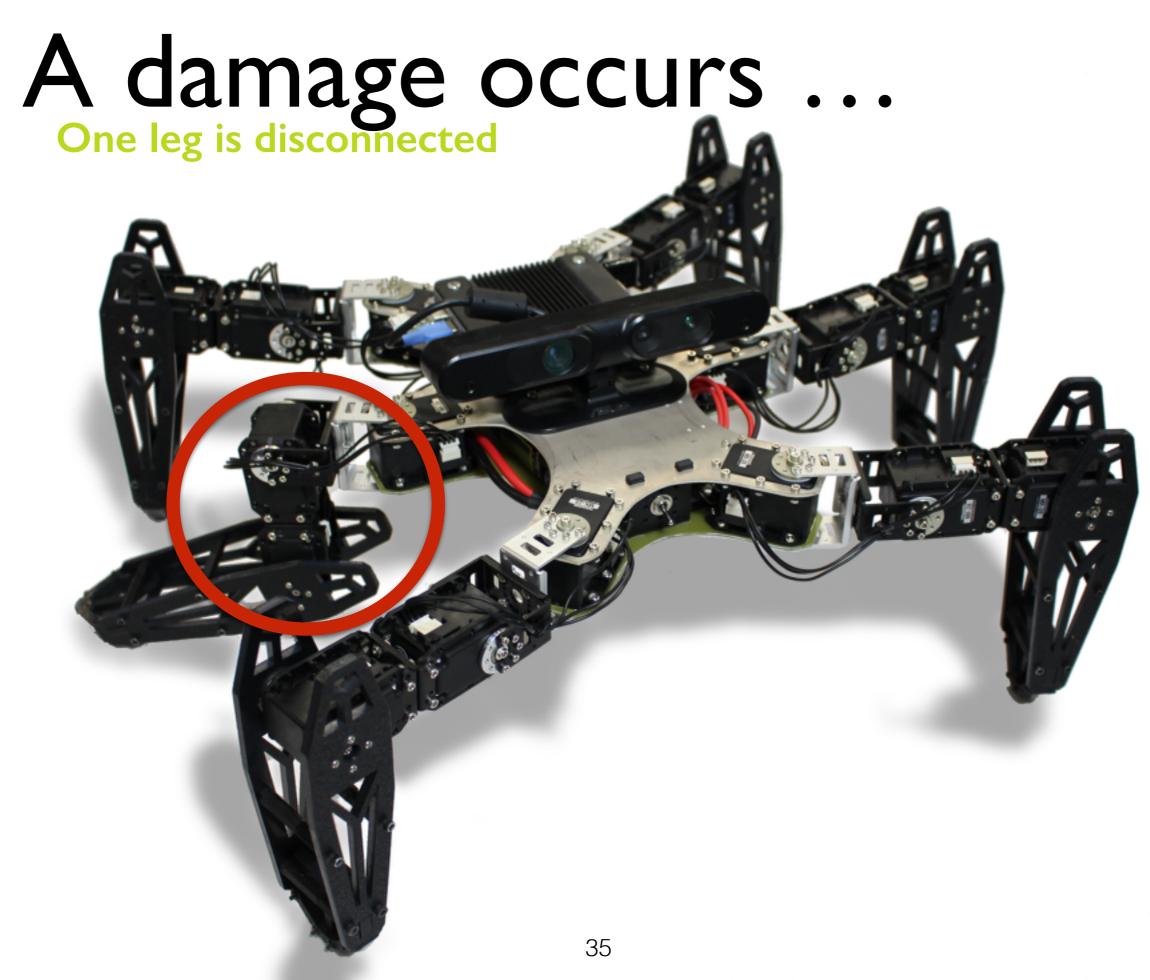
$$\mathbf{k} = \begin{bmatrix} k(\mathbf{x}, \mathbf{y}_1) & k(\mathbf{x}, \mathbf{y}_2) & \cdots & k(\mathbf{x}, \mathbf{y}_t) \end{bmatrix}$$



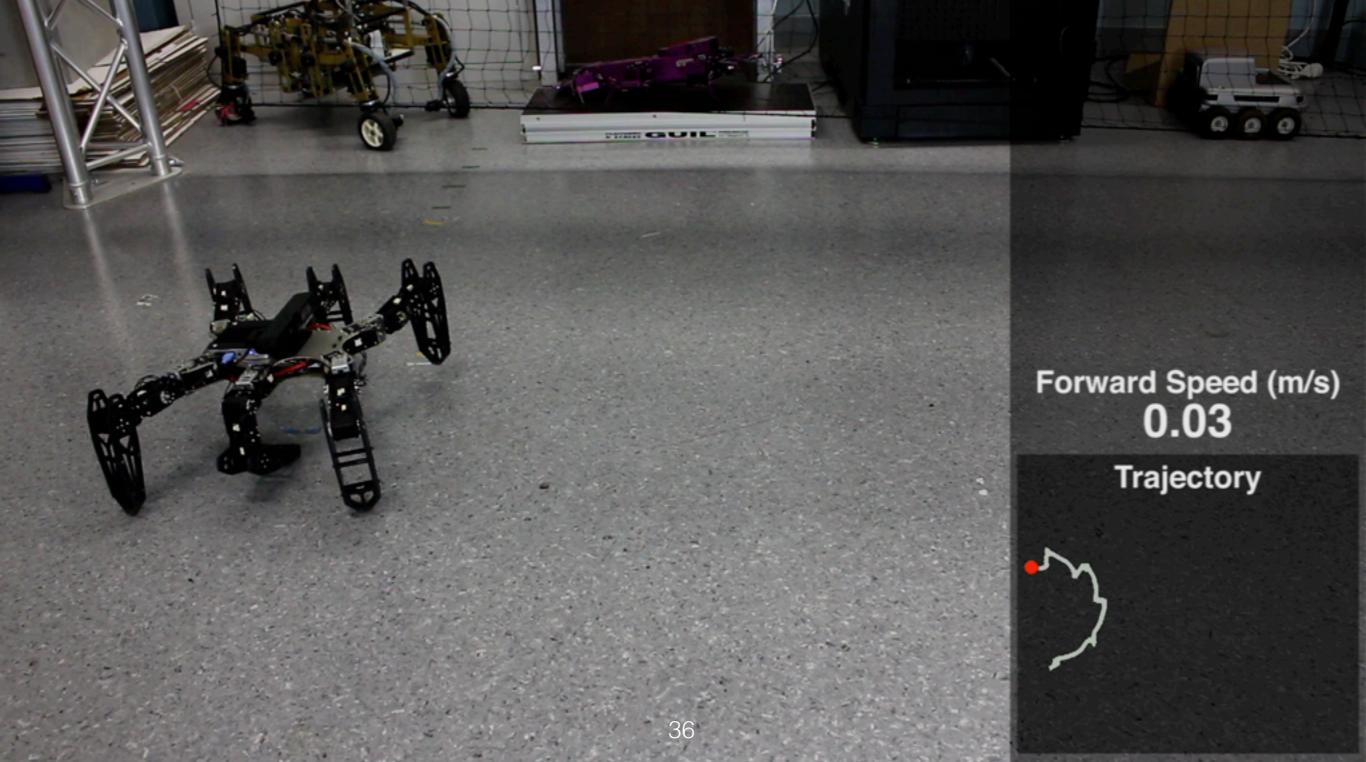
Application on a robot

Classic Hexapod Gait Open-loop controller - Tripod Gait

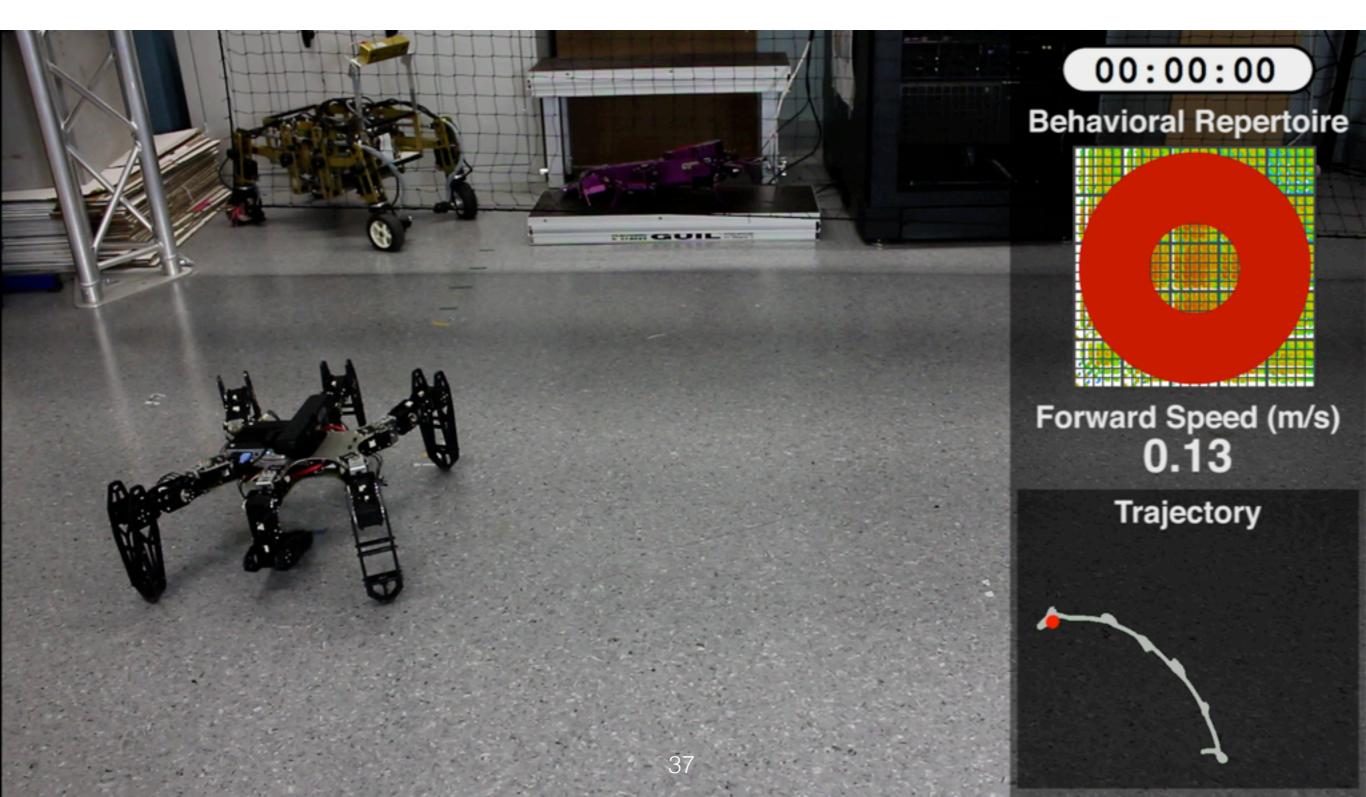




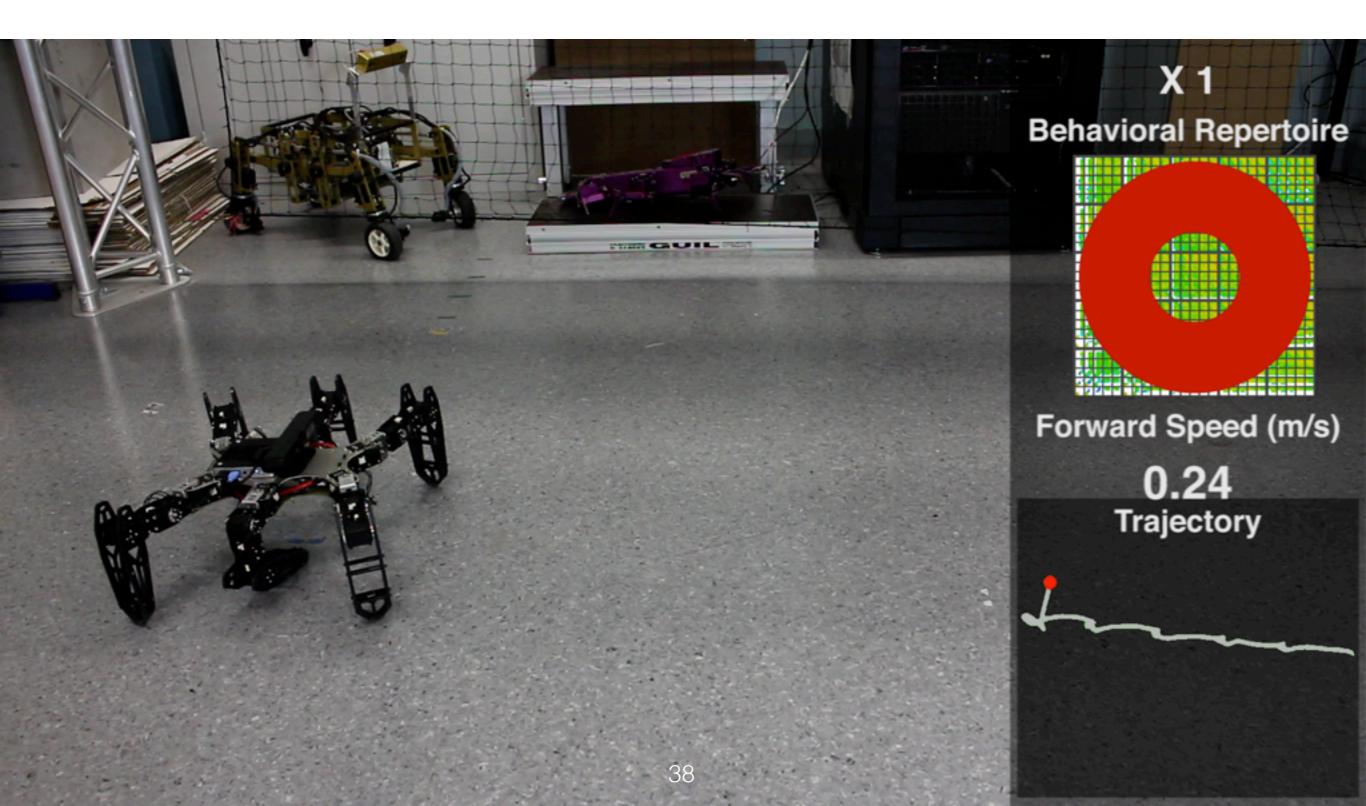
The behavior is seriously affected



Learning process



Result after 40 seconds

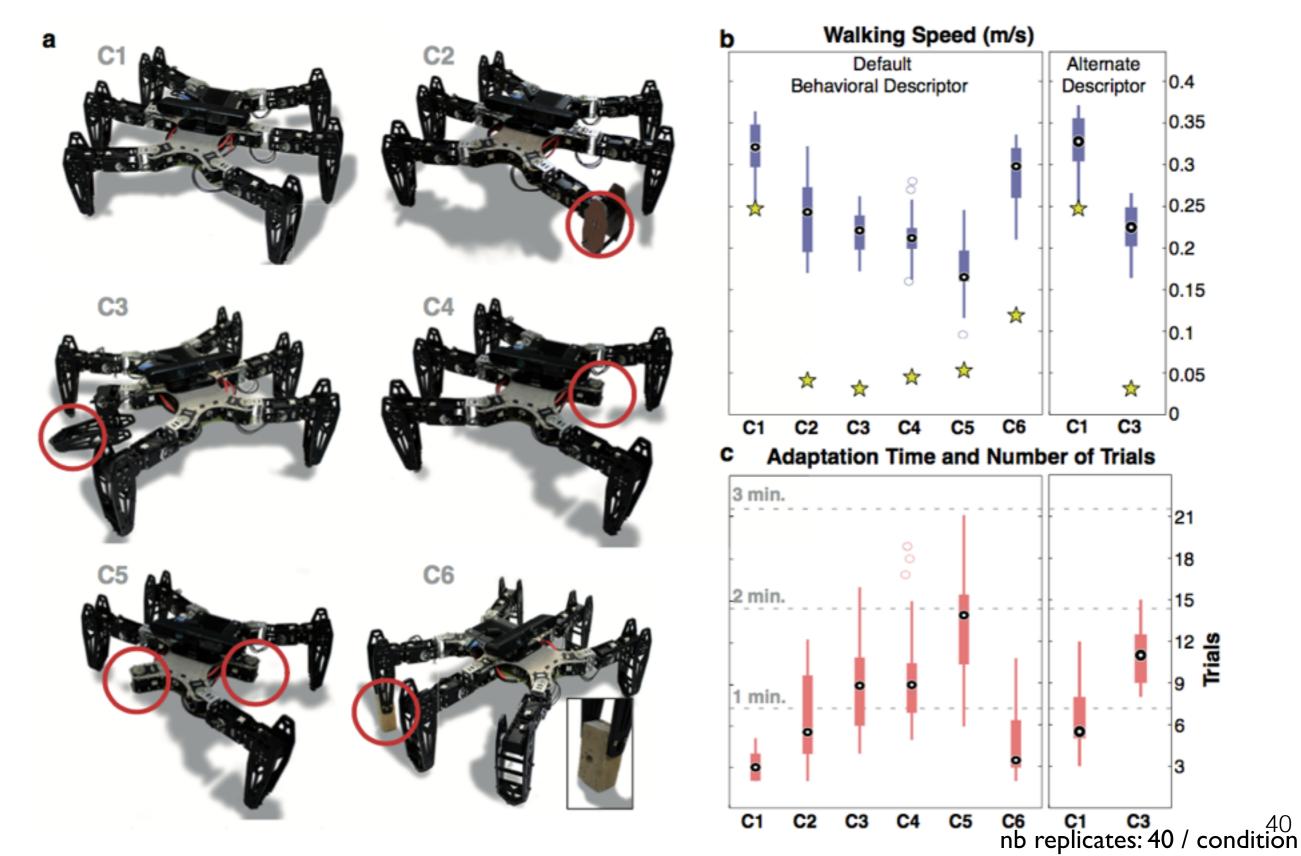


Other examples

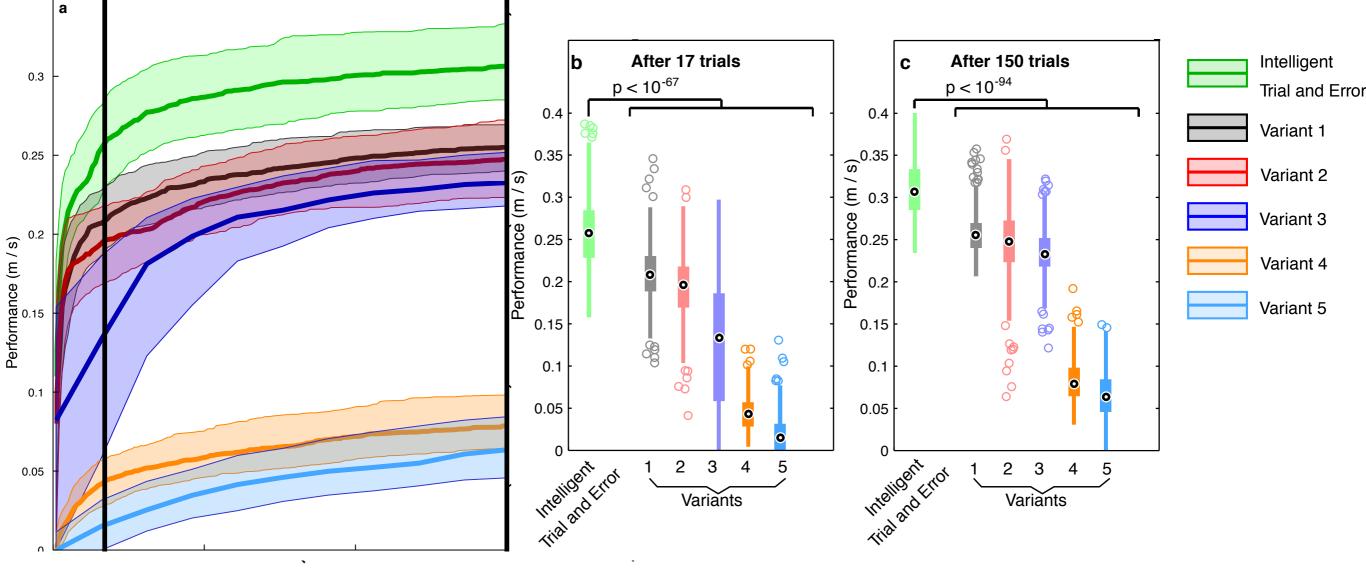
a broken leg

Ø

All tested scenarios



Comparison with the State of the Art In simulation



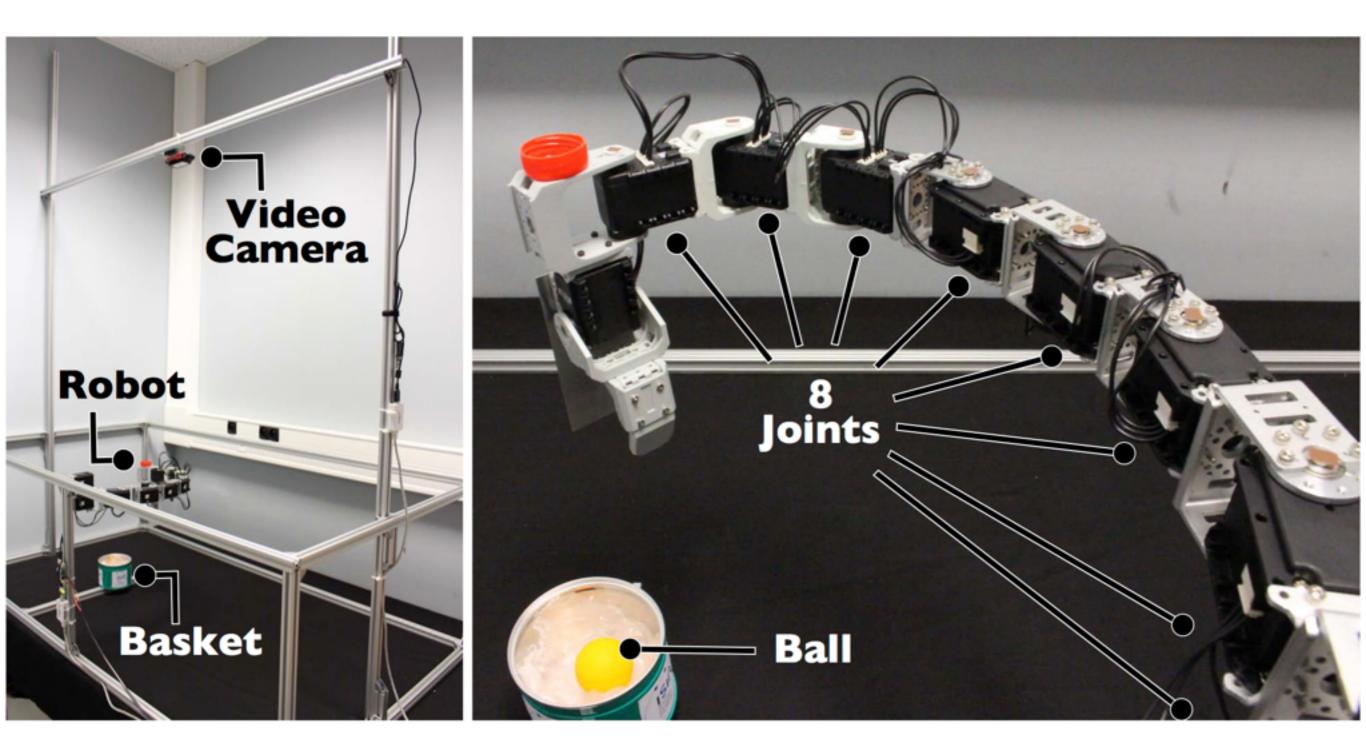
Variant	Behavior-performance map creation	Priors on performance	Search algorithm	equivalent approach
Intelligent Trial and Error	MAP-Elites	yes	Bayesian Optimization	-
Variant 1	MAP-Elites	none	Random Search	-
Variant 2	MAP-Elites	none	Bayesian Optimization	-
Variant 3	MAP-Elites	none	Policy Gradient	-
Variant 4	none	none	Bayesian Optimization	Lizotte et al. (2007)
Variant 5	none	none	Policy Gradient	Kohl et al. (2004)

nb replicates: 480 / variant

Works on **Original Sector Original Sector Original Sector Original Sector Original Sector Original Sector Original Sector Orig**

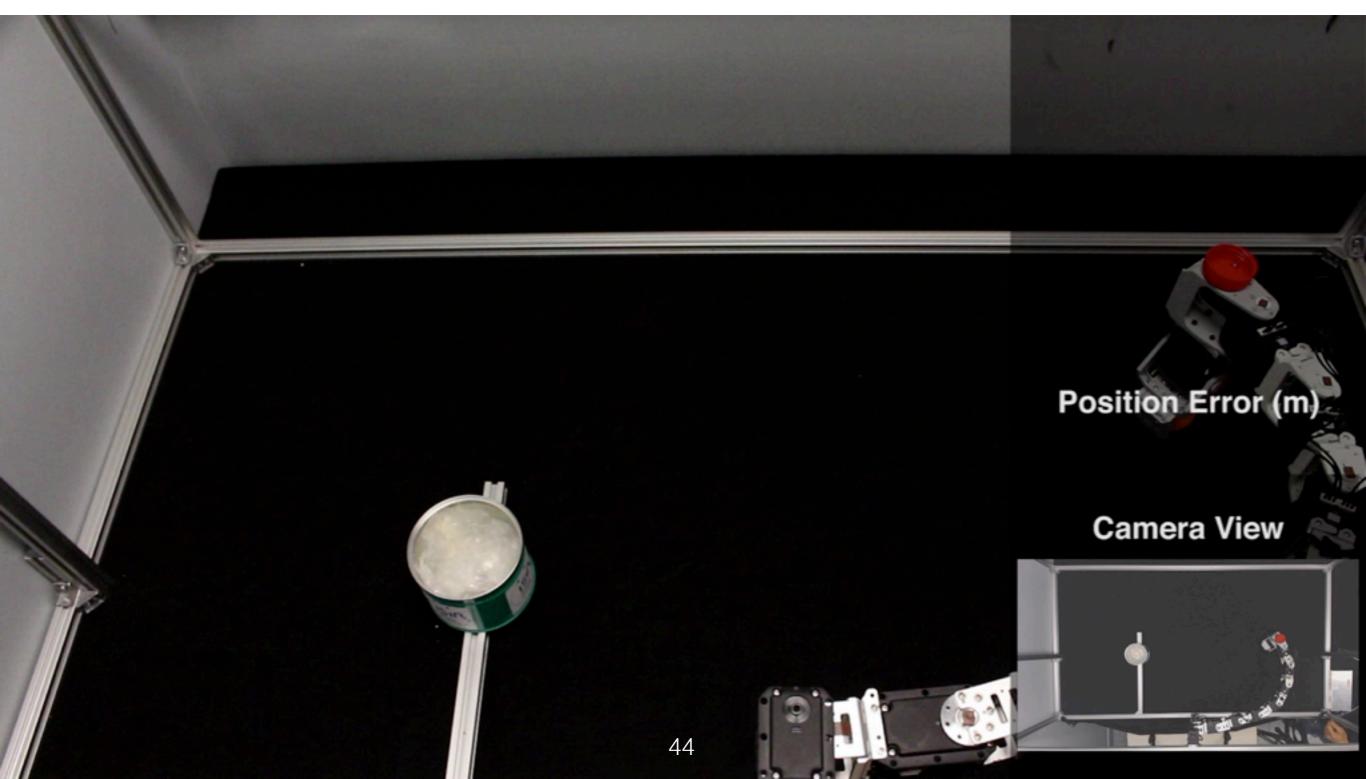
ISIR

8 DOFs Arm



8 DOFs Arm

Open-loop controller

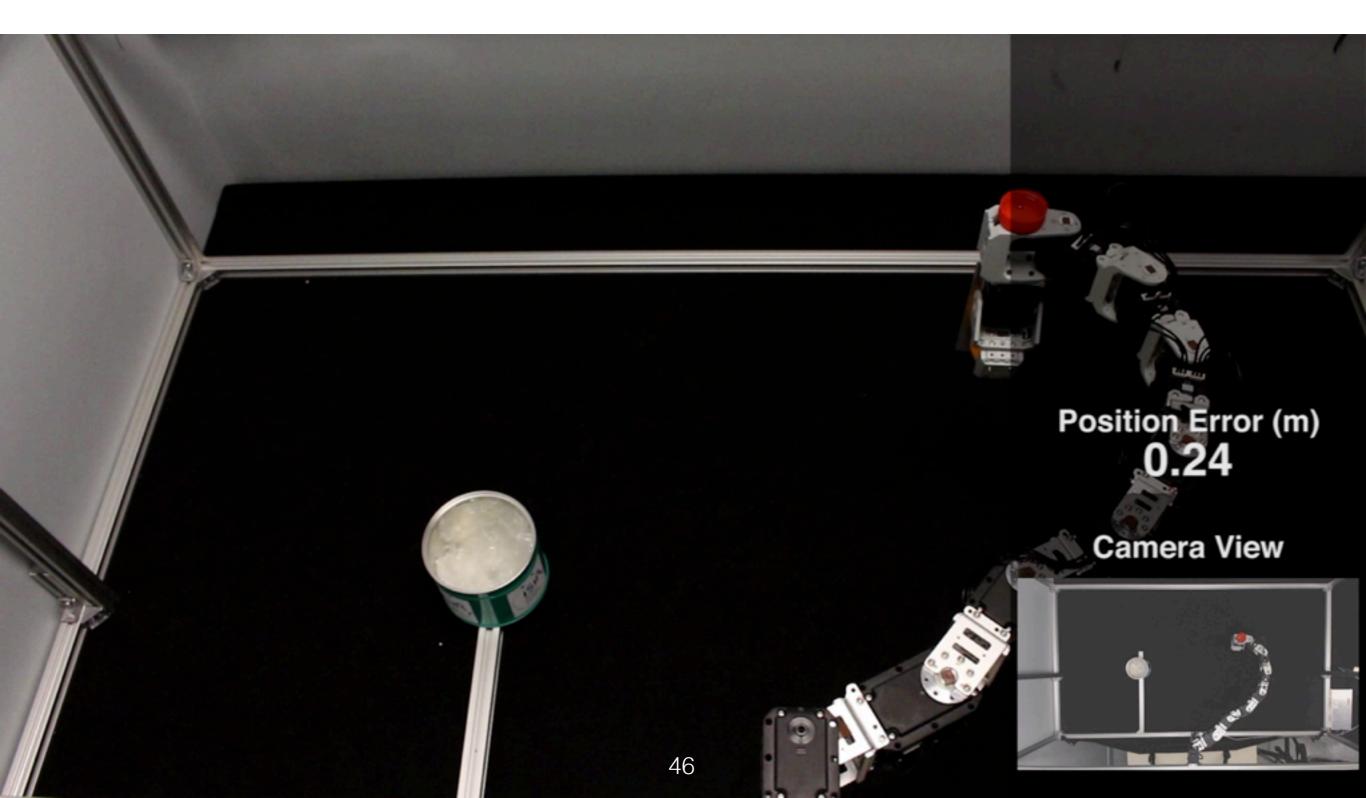


Damaged 8 DOFs Arm

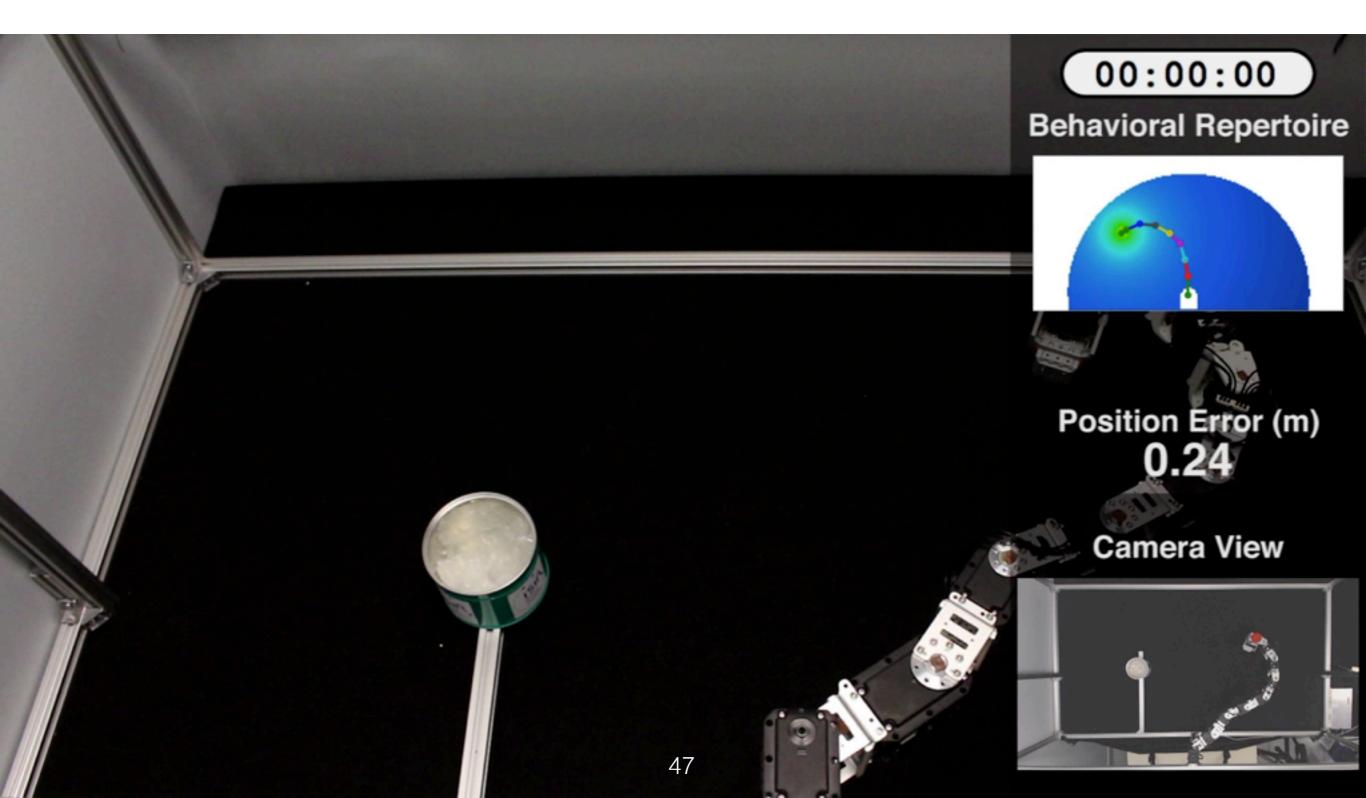
Joint blocked at 45°

We tested 14 different damage conditions

Damaged 8 DOFs Arm



Damaged 8 DOFs Arm



Other examples

One joint with a permanent offset and one unresponsive joint

Intelligent Trial and Error Conclusion

- with the Intelligent Trial and Error algorithm, robots can generate and use prior knowledge (simulation) to learn and adapt quickly.
- The Intelligent Trial and Error algorithm is at least one order of magnitude faster than state of the art learning algorithms.

Cully, Clune, Tarapore & Mouret (2015). Robots that can adapt like animals. Nature.

Thanks to:

My supervisors

Jean-Baptiste Mouret

Stephane Doncieux

Sylvain Koos

My co-authors

Jeff Clune

Danesh Tarapore

Thank you for your attention

Questions ?